身为棋子的少年不会在棋盘里睡着_第二百三十七章:无穷多个无穷 首页

字体:      护眼 关灯

上一页 目录 下一章

   第二百三十七章:无穷多个无穷 (第2/2页)

“数学强者,果然是恐怖如斯!”男主恍然大悟地倒吸一口热气。

    “于是乎呢鲍勃也想起了数学,才记起历史上有个名字叫做希尔伯特的大数学家,好像有个什么旅馆悖论以他命名,鲍勃说:‘这是不是叫做希尔伯特悖论啊?’经理说:‘是有这么个说法,但这并不是什么悖论,数学逻辑上并无矛盾之处。只是充分说明了无限集合的性质与有限集合的性质完全不相同。’鲍勃想起了著名的芝诺悖论,认为数学家都喜欢狡辩,不过鲍勃也喜欢狡辩,他对经理说:‘你这个‘无限’,不过是个数学上的概念,它与事实是不符合的。你看,你这个旅馆占地面积有限,怎么可能容纳下无限多个房间呢?就算不是逻辑上的悖论,也可算是一个与实际情况不相符合的‘佯谬’吧?’经理哈哈大笑:‘你又错了吧,占地面积虽然有限,往空中可是能无限发展啊……不管怎么样,赶快去你的1号房间休息吧!……”

    “那这就可不对了,房屋结构强度,还有宇宙大小其实也是有限的啊!真的要纠结真实性的话,首先根本就不可能有无限多的人啊!”

    “没错,就像我之前所说的,过去的现实物理世界中并不可能存在无穷大。而且鲍勃最近在学校也刚好修了一门很难的物理课,老师讲到‘狄拉克海’。鲍勃记起那位教授当时对真空狄拉克海的描述和这儿的无限旅馆永远能接受新客人的概念有某些类似的地方。鲍勃好像有所感悟,无限大集合加上一些元素,还是无限大集合。‘狄拉克海’就是这么一个无限大的电子海洋,加上几个电子,减少几个电子,丝毫不影响这个无限大真空的性质。鲍勃躺到床上,迷迷糊糊进入梦乡,脑袋中还在转悠着‘有限’、‘无限’……好了,到这里我就基本讲完了,这个故事有没有给你什么启发?”

    “启发倒是还好,我就是在想啊,这一问题虽然被鲍勃称作‘悖论’,但事实上它并不矛盾,而仅仅是与我们直觉相悖而已。在有无限个房间时,‘每个房间都客满’与‘无法入住新的客人’两者其实并不等价。”

    “是的,无限集合的性质与有限集合的性质并不相同。对于拥有有限个房间的旅馆,其奇数号房间的数量显然总是小于其房间总数的。然而,在希尔伯特所假想的这一旅馆中,奇数号房间数与总房间数是相同的。在数学上可以表述为包含所有房间的集合的势与包含所有奇数号房间的子集的势相同。事实上,无限集合都拥有这样的特点,所有无限集合都与它的某些子集的势相同。对于可数集,不管是奇数、偶数、质数、自然数,以及自然数之比,其势记都可以记为……”

    “阿列夫零?”尹浩瞬间就想起了那天晚上查找《乌合之众象棋》资料时,里面确实提到的这个东西,联系到“硅脑袋”这番故事的讲解,他便瞬间豁然开朗了,但转瞬之间又再次被迷云笼罩:“那后面我记得她还有说什么阿列夫一,阿列夫二呢?又指代什么?”

    “这些我先不详细展开,就简单告诉你吧!阿列夫一可以指代任意区间或数轴上的所有实数,也可以指代任意长度或点线面体中所有点的数量,这些都是不可数的,自然就远远多于阿列夫零,势也就更高。”

    “这个就没办法一一对应了吗?有自然数之比去对应所有实数?”

    “不是没办法是真的不行,先不说更号2,圆周率这些无限不循环小数无法用整数比去构建了。不论你如何构造一个小数,我都可以一位一位去对,就是跟你不一样而得到一个你那串里没有出现的小数,所以无理数的‘无限大’实际上也比分数的无限大要大。”

    “这样啊……就是对于已有的数字找茬抬杠嘛!那阿列夫二呢?”尹浩似乎找到了一个杠能抬一抬。



加入书签 我的书架

上一页 目录 下一章